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Abstract

Rising greenhouse gas emissions have contributed to unprecedented levels of climate 
change, while microbial conversion and utilization of CO2 is a practical way to reduce emissions 
and promote green manufacturing. This article mainly summarizes several natural CO2 pathways 
that have been discovered, including the Calvin cycle, the reduced tricarboxylic acid (rTCA) 
cycle, the Wood–Ljungdahl (WL) pathway, the 3-hydroxypropionate/4-hydroxybutyrate (HP/HB) 
cycle, the dicarboxylate/4-hydroxybutyrate (DC/HB) cycle, the 3-hydroxypropionate (3HP) cycle, 
the reductive glycine (rGly) pathway, and artifi cially designed carbon fi xation pathways includes 
the CETCH cycle, the MOG pathway, the acetyl-CoA bicycle, and the POAP cycle. We also 
discussed applications of diff erent carbon fi xation enzymes, notably ribulose-1, 5-diphosphate 
carboxylase/oxygenase, pyruvate carboxylase, carbonic anhydrase, as well as formate 
dehydrogenase. This paper further addressed the development of photosynthetic autotrophs, 
chemergic autotrophs and model bacteria Escherichia coli or yeast produced main products for 
CO2 fi xation through metabolic engineering, such as alcohols,  organic acids, fatty acids and 
lipids,  bioplastics, terpenoids, hydrocarbons, and biomass.  Future studies on CO2 microbial 
conversion should focus on improving the effi  ciency of carbon fi xation enzymes, metabolic 
modules of the carbon sequestration pathway, and intracellular energy utilization. Coupled 
microbial and electrochemical methods for CO2 fi xation, in addition to biological fi xation, show 
considerable promise. 

Carbon capture, utilization and storage (CCUS) technologies 
use net-carbon or low-carbon energy sources to achieve the 
purpose of reducing carbon dioxide on a worldwide scale [2,3]. 
CCUS, which develops an environment that is both sustainable 
and ecologically friendly, represents a different approach to 
achieving reduction goals [4]. CCUS technology consists of 
several steps: CO2 capture, transportation, utilization, and 
storage. First CO2 is absorbed and separated through physical 
[5] and chemical absorbers [6], metal-organic frameworks 
(MOFs) [7,8], i onic liquids [9], bioenergy with carbon capture 
and storage (BECCS) [10], m embranes [11], etc. The CO2 is then 
transported to a place of storage or a location for carbon use. 
Lastly, the captured CO2 is subsequently employed or stored 
as resources using engineering techniques. The main method 
that CO2 is used as a resource includes direct use (such as the 
production of dry ice, refrigerants, CO2 microbubble technology 
[12,13], chemical conversion (such as the production of high-
value fuels, chemicals, building materials, and minerals) 

Introduction
Global temperatures have reportedly risen by 1 ℃ as 

a result of human activity and natural events, including 
ocean sinks, earthquakes, and volcanic activities,  since the 
beginning of the Industrial Revolution. The rapidly increasing 
CO2 concentration in the atmosphere has contributed to 
a number of environmental problems, including global 
warming, a decline in biodiversity, ocean acidiϐication, and 
even modiϐications to industrial production methods and 
human lives. If growth continues at the current pace, the 
global temperature will continue to rise, worsening extreme 
weather, ecological disasters, and other negative effects [1]. 
In order to alleviate climate stress, 178 countries signed the 
"Paris Agreement" in 2016. They promise to limit the average 
global temperature increase this century to 1.5 ℃. By 2030, 
carbon emissions will need to be reduced globally by 40% in 
order to achieve that objective.

https://crossmark.crossref.org/dialog/?doi=10.29328/journal.acee.1001055&domain=pdf&date_stamp=2023-09-04
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[14,15], electrochemical catalytic conversion of CO2 [16,17], 
thermal catalysis [18], photocatalysis [19], enzymatic 
conversion [20], coupling electrochemical CO2 conversion 
with CO2 capture [21], microbial utilization [22] and coupling 
photo/electrocatalytic with microbial CO2 utilization [23].  
Among these, the technology of microbial CO2 utilization and 
conversion is endowed with particular advantages including 
mild reaction conditions, minimal pollution, low cost, and low 
energy consumption, which is supposed to be a promising 
way of reducing carbon emissions [24,25].  

In this paper, we will mainly discuss the development of 
microbial CO2 utilization and conversion technology. This 
review concentrates on both natural and artiϐicial CO2 ϐixation 
pathways, as well as the use of key CO2 ϐixation enzymes like 
ribulose-1,5-diphosphate carboxylase/oxygenase (RuBisCo), 
formate dehydrogenase (FDH), pyruvate carboxylase (PC), 
and carbonic anhydrase (CA), and the advancement of 
photosynthetic autotrophs, chemoautotrophs, and model 
bacteria like E.coli and yeast in ϐixing CO2 through metabolic 
engineering, genetic engineering, and synthetic biology. 
The existing limitations and challenges associated with the 
biological conversion and utilization of CO2 are then described.

Carbon dioxide fi xing pathways

According to features like ATP usage, carbon ϐixation 
reactions, enzymes involved, and carbon species being ϐixed, 
the natural carbon ϐixation pathways have been divided 
into the Calvin-Benson-Bassham (CBB) cycle, the reductive 
tricarboxylic acid (rTCA) cycle, the Wood-Ljungdahl (WL) 
pathway, the 3-hydroxyproppionate (3HP) cycle, the 
3-hydroxyproppionate/4-hydroxybutyrate (HP/HB) cycle, 
the dicarboxylate/4- hydroxybutyrate (DC/HB) cycle and 
reductive glycine (rGly) pathway. In recent years, scientists 
have synthesized several in vitro CO2 ϐixation routes based on 
the kinetics of enzyme reactions, including the CETCH cycle 

[26], the MOG pathway [27], the ACB cycle [28] and the POAP 
cycle [29] (Table 1) . In the following, we will present these 
pathways and discuss their reaction and progress.

Natural CO2 fi xation pathway

Calvin-Benson-Bassham cycle: The majority of 
photosynthetic plants, algae, and proteobacteria use the 
Calvin-Benson-Bassham cycle (CBB cycle) as their primary 
route for ϐixing CO2 in nature. There are 13 enzymatic 
processes, of which ribulose-1, 5-diphosphate carboxylase/
oxygenase, and phosphoribulokinase are the major enzymes. 
This cycle can be divided into three stages: (1) carboxylation, 
also known as CO2 ϐixation, a molecule of CO2 is integrated 
into a ϐive-carbon compound called 1,5-diphosphate ribulose 
(RuBP), resulting in an unstable C6 compound that breaks 
down into two molecules of a three-carbon compound known 
as 3-phosphoglyceric acid; (2) reduction, NADPH reduces 
3-phosphoglyceric acid to Glyceraldehyde 3-phosphate 
while consuming ATP; (3) regeneration, glyceraldehyde 
3-phosphate through a series of reactions to produce ribulose 
diphosphate [30]. 

Researchers have successfully introduced the CO2 
ϐixation process of the Calvin cycle into model organisms 
like Escherichia coli and yeast using genetic engineering 
techniques. This development overcomes the limits of 
photoautotrophic carbon sequestration and enables 
heterotrophic organisms to progress fully into autotrophy 
utilizing CO2 as the only carbon source [31]. By integrating the 
CO2 ϐixation pathway with energy consumption pathways in E. 
coli, Gleizer and colleagues [32] created a fully autotrophic E. 
coli strain that can thrive only on CO2. Gassler and coworkers 
controlled the endogenous gene expression in Pichia pastori 
to deactivate a portion native methanol metabolism pathway. 
They then added a heterotrophic CBB cycle for carbon ϐixation, 
which transformed Pichia pastoris from a heterotrophic to an 
autotrophic organism capable of utilizing CO2 for growth [33].

Table 1: Characteristics of pathways for CO2 fi xation.
Pathway Key enzymes Carbon source Product ATP NAD(P)H Ref

CBB cycle Ribulose-1,5-diphosphate carboxylase/oxygenase
Phosphoribulokinase 3 mol CO2 GA-3P 9 mol 6 mol [30]

rTCA cycle ATP-citrate lyase
2-ketoglutarate synthase 2 mol CO2 Acetyl-CoA 2 mol 4 mol [36]

W-L pathway
Formate dehydrogenase

CO dehydrogenase
F ormylmethanofuran dehydrogenase

2 mol CO2 Acetyl-CoA 1 mol 4 mol [39]

DC/HB cycle 4-Hydroxy butyryl-CoA dehydratase 1 mol CO2 + 1 mol HCO3
- Acetyl-CoA 3 mol 4 mol [45]

HP/HB cycle 4-Hydroxy butyryl-CoA dehydratase 2 mol HCO3
- Acetyl-CoA 4 mol 4 mol [42]

3HP cycle Malonyl-CoA reductase
Malyl-CoA lyase 3 mol HCO3

- Pyruvate 5 mol 5 mol [47]

rGly cycle Reductive glycine cleavage complex 1 mol CO2 Pyruvate 2 mol 3 mol [48]
CETCH cycle Crotonyl-CoA carboxylase/reductase 1 mol CO2 Glyoxylate 1 mol 7 mol [26]
MOG pathway Phosphoenolpyruvate carboxylase CO2 Glyoxylate 8-12 mol 6 mol [27]

ACB cycle Ferredoxin oxidoreductase 2 mol CO2 Acetyl-CoA 5 mol 5 mol [28]

POAP cycle

Pyruvate carboxylase
Acetate-CoA ligase

Oxaloacetate acetylhydrolase
Pyruvate:ferredoxin oxidoreductase

2 mol CO2 Oxalate 2 mol 1 mol [29]
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Methanol is a C1 substrate that methylobacterium uses as 
a source of biomass and energy. Methylobacterium extorquens 
AM1 was engineered by Borzyskowski and group to carry out 
both energy metabolism and biomass synthesis, with energy 
coming from methanol metabolism and biomass synthesis 
deriving from CO2 metabolism via the Calvin cycle [34].

Through the CBB cycle, photosynthetic autotrophs 
naturally ϐix about 300 billion tons of carbon dioxide each 
year. The rate of carbon ϐixation is a key factor limiting plant 
development in environments under conditions of abundant 
water and light. To increase the metabolic ϐlow of the CBB 
cycle, CO2-ϐixing enzyme efϐiciency must be enhanced [35]. 

Reductive tricarboxylic acid cycle

The reductive tricarboxylic acid (rTCA) cycle has since been 
found in Thiobacillus viridis, bacteria, and archaea. In this cycle 
(Figure 1) , the enzyme ATP-citrate lyase breaks down citrate 

into acetyl-CoA and oxaloacetic acid. Malate dehydrogenase 
then catalyzes the enzymatic reduction of oxaloacetic acid 
to malic acid, which generates fumaric acid through fumaric 
hydration. Fumaric acid is further transformed into succinic 
acid through the enzyme reductase. Finally, succinic acid 
generates citrate by redox [36].

Malubhoy and coworkers engineered yeast strains to 
produce succinic acid (SA) from pyruvate by rTCA cycle, the 
greatest yield of SA was 0.23 Cmol/Cmol glycerol [37]. Kang 
and colleagues overexpressed pyruvate carboxylase, malate 
carboxylase, and malate transporter simultaneously adding 
xylose metabolic pathways and knocking out the natural yeast 
pathways that create ethanol and glycerol. Through the rTCA 
cycle, this allowed engineered yeast to produce malic acid 
[38].

WL pathway

The WL pathway, also known as the reductive acetyl-CoA 

Figure 1: Natural CO2 fi xation pathways. the CBB cycle (in blue) [30]; the reductive TCA cycle (in brown) [36]; the Wood–Ljungdahl pathway (in pink) [39]; the HP/HB cycle (in 
cyan) [42]; the DC/HB cycle (in green) [44]; the 3-HP cycle (in purple) [47]; the reductive glycine pathway (in orange) [48].  RuBisCo: Ribulose-1, 5-diphosphate Carboxylase/
oxygenase; ACLY: ATP-Citrate Lyase; KGOR: 2-Ketoglutarate ferrioxoreductase; FDH: Formate Dehydrogenase; CODH: CO Dehydrogenase; FMDH: Formylmethanofuran 
Dehydrogenase; 4-BUDH: 4-Hydroxy butyryl-CoA dehydratase; PCS: Propionyl CoA synthase; MCR: Malonyl-CoA Reductase; GCS: the Glycine Cleavage System.
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3-hydroxypropionate (3HP) cycle effectively integrates two 
moles of bicarbonate [46]. The four steps in this metabolic 
process are as follows: (1)propionyl CoA synthesis from 
acetyl-CoA; (2) propionyl CoA conversion to succinate; (3) 
glyoxylate production; and (4) glyoxalate and propionyl CoA 
assimilation reactions to generate pyruvate followed with 
acetyl CoA regeneration. Through acetyl-CoA/propargyl-CoA 
carboxylase, the 3-HP cycle assimilates 2 moles of bicarbonate 
[47]. The enzyme of this cycle has noteworthy characteristics 
such as effective CO2 ϐixation, oxygen insensitivity, abundant 
intermediates, and the capacity to regenerate glycolic acid 
and glyoxylic acid. In E. coli K12, Mattozzi and colleagues 
expressed genes in an operon linked to the 3-HP pathway 
from various species. They successfully set up a heterologous 
3-HP metabolic pathway and evaluated its functionality via a 
growth curve. The ϐindings show that the four subpathways 
are all capable of functional heterologous expression [47].

Reductive glycine pathway

Anaerobic bacteria use the reductive glycine (rGly) route 
to assimilate formate. Tetrahydrofolate, a cofactor in this 
pathway, activates formate into formyl-tetrahydrofolate 
while expending one molecule of ATP in the process. Then, 
methylene tetrahydrofolate is produced by further reducing 
formyl-tetrahydrofolate. After the condensation and 
reduction of methylene tetrahydrofolate by CO2, NH3, and 
NADH, glycine is produced. The reversible glycine cleavage 
system (rGCS), which consists of the aminomethyltransferase 
T protein, glycine decarboxylase P protein, dihydrolipoamide 
dehydrogenase L protein, and the aminomethyl carrier H 
protein, is the main component of rGlyP [48,49].

Bang and colleagues expressed tetrahydrofolate (THF) 
cycle and formate dehydrogenase in E. coli to create a formic 
acid utilization route, which allowed the engineered strain to 
grow without the need for additional glucose supplementation 
[50,51]. Cruz and coworkers overexpressed the enzyme MIS1 
together with other enzymes involved in the glycine cleavage/
synthesis system in yeast, establishing a glycine synthesis 
route that allows yeast to generate glycine from formate and 
CO2 [52]. The reductive glycine pathway was modularized by 
Kim and colleagues into four parts (C1, C2, C3, and energy), 
and these modules as well as methanol dehydrogenase 
were introduced into E. coli. As a result, C1 substrates such 
as methanol, formic acid, and CO2 were effectively used by 
modiϐied bacteria for growth [53].

The rGly pathway, along with the WL pathway and TCA 
cycle, is one of the most efϐicient ATP pathways among the 
veriϐied CO2 ϐixation pathways. As a result, under anaerobic 
industrial circumstances, the reductive glycine pathway has 
become an incredibly attractive production method. However, 
insufϐicient ATP biosynthesis in anaerobic conditions prevents 
the production of a variety of compounds via these pathways 
[48]. In order to produce ATP efϐiciently and use a variety of 

pathway, was discovered by Wood, Ljung-dahl, and others, 
and exists in acetonogenes, acetogenes, and some fungi. 
During one of the two branches, one CO2 molecule is reduced 
to a single methyl group, while in the other branch, one 
molecule of CO2 is reduced to CO, which then cooperates with 
the methyl group and CoA to generate acetyl-CoA. Acetyl-CoA 
can be further converted into biomass or acetyl phosphate. 
Subsequently, the acetyl combines with ADP to produce 
ATP and acetate [39]. CO dehydrogenase (CODH), formate 
dehydrogenase, and formylmethanofuran dehydrogenase are 
the main enzymes in this pathway (Figure 1). 

Papoutsakis and colleagues expressed 11 enzymes and 
auxiliary core protein genes from Clostridium in Clostridium 
acetobutylicum demonstrating that the two branches can 
work independently of one another. They discovered that 
acetyl-CoA synthase (ACS) catalyzes the condensation of CO 
with methyl for the synthesis of acetyl-CoA, whereas CODH 
catalyzes the reduction of CO2 to CO. They also learned that 
CODH/ACS forms complexes that connect two branches of the 
WL route [40]. By introducing ACS and ACDH into E. coli, Hu, 
and colleagues from Jiangnan University created a novel CO2 
ϐixation metabolic route (HWLS). They combined the ϐixation 
and utilization of carbon dioxide in two modules, producing 
butyrate and malic acid with yields of 1.48 mol/mol glucose 
and 0.79 mol/mol glucose, respectively [41].

HP/HB cycle

The autotrophic thermococcus utilizes acetyl-CoA/
propionyl-CoA carboxylase as the primary carboxylase for 
CO2 ϐixation, according to research by Berg and colleagues 
[42]. Through the reduction of 3-hydroxypropionic acid, one 
molecule of acetyl-CoA and two molecules of bicarbonate 
are transformed into succinyl-CoA in this system. Succinyl-
CoA is then reduced to 4-hydroxybutyric acid, which is 
subsequently converted into two molecules of acetyl-CoA 
by 4-hydroxybutyryl CoA dehydratase (Figure 1). Recycling 
bicarbonate within cells represents a more feasible 
evolutionary pathway than CO2. In Pyrococcus furiosus, 
Keller and team effectively produced 3-hydroxypropionic 
acid by overexpressing ϐive HP/HB cycle genes derived from 
Metallosphaera sedula [43].

DC/HB cycle

The dicarboxylic acid/4-hydroxybutyric acid (DC/HB) 
cycle exists in anaerobes and facultative aerobes, such as 
Thermoproteales and Pyrolobus fumarii [44]. One molecule 
of CO2 and one molecule of bicarbonate are ϐixed by pyruvate 
synthase and phosphoenolpyruvate (PEP) carboxylase in this 
pathway, respectively, to produce succinyl-CoA [45]. The DC/
HB cycle has not been successfully expressed heterologously 
because it requires unique iron, sulphur, and thioester 
proteins, and other things.

3HP cycle

Through the acetyl-CoA/propargyl-CoA carboxylase, the 
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single-carbon substrates for sustainable biosynthesis, future 
research should focus on investigating and improving the 
glycine synthase system.

Artifi cial CO2 fi xation pathways

In addition to the natural pathways for CO2 ϐixation 
mentioned above, researchers have also created a number of 
artiϐicial pathways for CO2 ϐixation depending on features like 
topology, ATP efϐiciency, and thermodynamics (Figure 2) .

CETCH cycle

The CETCH cycle, which consists of 17 enzymes obtained 
from nine distinct species including animals, plants, and 
microbes, indicates the synthetic CO2 ϐixation route in vitro. 
The CETCH cycle compared to the naturally occurring 
CO2 ϐixation pathway, demonstrates higher kinetic and 
thermodynamic favorability after multiple optimization 
through enzyme engineering and metabolic engineering. 
This cycle overcomes the carboxylation bottleneck in natural 
carbon ϐixation pathways by employing highly carboxylated 
enoyl-CoA carboxylases/reductases (ECRs) as a major 
enzyme for converting CO2 into organic molecules at a rate of 
5 nanomoles per minute per milligram of protein. ECRs exhibit 
catalytic efϐiciency 2-4 times better than RuBisCo, the primary 
carbon ϐixation enzyme of the CBB cycle. It exists in secondary 
metabolism, utilizing molecular oxygen as a substrate and 
not participating in autotrophic carbon ϐixation pathways. 
Notably, this new carbon ϐixation route uses less energy and 
calls for fewer reaction steps [26].

MOG pathway

The MOG pathway was synthesized by Bar-Even and 
coworkers by combining the metabolic modules of many 
organisms. They compared the speciϐic activity and afϐinities 
of phosphoenolpyruvate carboxylase, pyruvate carboxylase, 
acetyl-CoA and propionyl-CoA carboxylase and other 

carboxylases towards CO2 or HCO3
- and metabolic pathways, 

revealing that these metabolic pathways generate glyoxylate 
via the same metabolic pathway. Consequently, these pathways 
were termed the MOG (malonyl-coenzyme A-oxaloacetate 
glyoxylate) pathways. Notably, the MOG pathways exhibit 
signiϐicant quantitative advantages, such as the overall kinetic 
rate, cycle rates, and carboxylation efϐiciency [27].

A cetyl-CoA bicycle

Acetonogenic bacteria metabolize C1 substrates into 
C2 metabolites, such as acetyl-CoA. Wu, et al. sequentially 
connected three functional modules—carbon ϐixation, 
gluconeogenesis, and non-oxidizing glycolysis, establishing 
the reductive acetyl-CoA bicycle (ACB) process, a novel CO2 
ϐixation method, by following this metabolic pathway [28]. In 
the ACB pathway, two molecules of the C1 substrate (CO2 or 
formic acid) and two molecules of acetyl-CoA are catalyzed 
by the enzyme pyruvate:ferredoxin oxidoreductase (Pfor), 
resulting in two molecules of pyruvate. Then, through 
gluconeogenesis, these pyruvate molecules are converted 
into one molecule of hexose. Through glycolysis, the hexose 
is further broken down into three molecules of acetyl-CoA. 
One of the acetyl-CoA molecules generates a C2 product, the 
other two molecules reenter the cycle. After one full cycle, 
two molecules of a C1 chemical generate one molecule of 
acetyl-CoA. In natural syngas fermentation strain Clostridium 
ljungdahlii DSM 13528 coexpressing phosphoketolase and the 
ACB pathway, the engineered bacteria growth rate and carbon 
ϐixation efϐiciency increased under three different culture 
conditions: gas only, sugar only, and gas-sugar mixture [54].

POAP cycle

The POAP cycle consists of a four-step reaction: (1) 
pyruvate:ferredoxin oxidoreductase (Pfor) carboxylates 
acetyl-CoA to pyruvate, which contrary to the natural 
metabolic pathway, is the most difϐicult step in the cycle; 

Figure 2: Synthetic CO2 fi xation pathways. The CETCH pathway (in purple) [26]; The MOG pathway (in yellow) [27]; the ACB cycle (in green) [28]; and the POAP cycle (cyan) 
[29].  CCR: Crotonyl-CoA carboxylase/reductase; PEPC: Phosphoenolpyruvate carboxylase; GNG: Gluconeogenesis; NOG: Non-Oxidative Glycolysis; PFOR: Pyruvate 
Ferredoxin Oxidoreductase; PYC: Pyruvate Carboxylase; OAH: Oxaloacetate Acetylhydrolase; ACS: Acetate-CoA Ligase.
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(2) pyruvate carboxylase (Pyc) then converts pyruvate into 
oxaloacetic acid through carboxylation; (3) oxaloacetic acid 
is hydrolyzed by the enzyme oxaloacetate acetylhydrolase 
(Oah), which releases acetic acid and oxalic acid; (4) acetic 
acid is converted into acetyl-CoA by the enzyme acetyl-CoA 
ligase (Acs) [29].

The POAP pathway completes one cycle, the conversion of 
two molecules of CO2 into one molecule of oxalic acid at the 
expense of two molecules of ATP, and one molecule of NAD(P)
H. This cycle involves the fewest steps among artiϐicial carbon 
ϐixation cycles and enables ϐixing CO2 under anaerobic and 
higher temperature conditions.

Despite having an advantage over thermodynamics, 
dynamics, and energy utilization effectiveness, the artiϐicial 
CO2 ϐixation pathway still has challenges, such as the 
complexity of a multi-enzyme system and a reliance on 
exogenous energy sources, which fall below the level of the 
standards of industrial biological manufacturing.

The key enzymes for carbon dioxide fi xation: 
Ribulose-1, 5-diphosphate carboxylase/oxygenase 

In the CBB cycle, 1, 5-diphosphate carboxylase/oxygenase 
(RuBisCo) catalyzes the carboxylation of ribulose 1, 
5-diphosphate (RuBP) with CO2 to form 3-phosphoglyceric 
acid (3-PG). RuBisCo also exhibits high sensitivity towards 
oxygen and can oxidize ribulose 1, 5-diphosphate to generate 
2-phosphoglycolic acid (2-PG) [55]. Based on its structural 
variations, RuBisCo can be classiϐied into four forms, forms I, 
II, III, and IV. Form I RuBisCo consists of eight large subunits 
and eight small subunits. The presence of small subunits 
enhances CO2 concentration within the environment and large 
subunit facilitates carboxylation. This structure is termed as 
L8S8 which is commonly found in eukaryotic and prokaryotic 
photosynthetic organisms. Form II RuBisCo comprises eight 
large subunits known as L8 structures primarily observed 
in spirorubidiums, dinoϐlagellates, and purple non-sulfur 
photosynthetic bacteria. Form III RuBisCo enzymes are 
composed of 2-10 large subunits predominantly existing in 
archaea or a few bacteria. While form IV, also called the Rubisco-
like protein (RLP), does not catalyze either of these reactions. 
There appear to be six different clades of RLP, mainly present 
in Bacillus, chlorothiobacillus, and Archaeococcus [56]. Pang, 
et al. expressed forms I and II of the Rubisco enzyme in E. coli 
to study how the two forms of the enzyme affect CO2 ϐixation. 
They found that the activity of these two enzymes for ϐixing 
CO2 was comparable [57].

Fujihashi, et al. designed the mutant SP8-T289D by 
contrast sequencing RuBisCo from a variety of organisms and 
introduced it into the mesophilic, photosynthetic bacterium 
Rhodopseudomonas palustris. As a result, the engineered 
bacterium displayed an approximately two-fold increase in 
speciϐic growth rate in comparison to the control bacterium 
[58]. Aigner, et al. coexpressed the chaperone proteins Cpn60/

Cpn20, Raf1/Raf2, RbcX, and bundle-sheath defective-2 
(BSD2) with Arabidopsis thaliana RuBisCo in E. coli. They 
found that BSD2 was crucial for stabilizing the assembly of 
plant RuBisCo large subunit until the small subunits were 
available [59].

The ability to ϐix CO2 has been demonstrated by 
heterologous expression of the bacterial RuBisCo in yeast, 
E. coli, and other microbial hosts [60-63]. However, the 
Rubisco only catalyzes a limited number of molecules per 
minute, low protein assembly efϐiciency, energy consumption, 
carboxylation efϐiciency, and speciϐic CO2 binding afϐinity 
lead to a low carbon ϐixation efϐiciency through heterologous 
expression [64]. Meanwhile, the difϐicult process of 
expressing RuBisCo from plants in microbes frequently 
leads to insufϐicient carboxylation functionality. In order 
to increase the effectiveness of heterologous expression 
in microorganisms, it is vital to explore the carboxylation 
active site of the RuBisCo and to optimize both carboxylation 
efϐiciency and speciϐicity. 

Pyruvate carboxylase

Pyruvate carboxylase (PC) catalyzes the carboxylation 
of pyruvate and HCO3

- to form oxaloacetic acid and 
phosphoenolpyruvate carboxylase (PEPC) catalyzes the 
carboxylation of phosphoenolpyruvate (PEP) with HCO3

- to 
form oxaloacetic acid and inorganic phosphate. Oxaloacetic 
acid, a signiϐicant TCA cycle intermediate, is used in the 
biosynthesis of several amino acids, including lysine, 
threonine, and aspartate. Therefore, the ϐixation of CO2 by 
pyruvate carboxylase has great signiϐicance for amino acid 
production [65].

Zelle, et al. expressed pyruvate carboxylase PYC2, malate 
dehydrogenase (MDH), and malic acid transporters SpMAE1, 
and the malic acid production in Saccharomyces cerevisiae 
reached 59 g/L [66]. To further increase fumaric acid 
production, Xu, et al. knocked down gene fum1 encoding 
fumarase and overexpressed the fumaric acid transporter 
and pyruvate carboxylase [67]. Xiberras, et al. constructed 
the yeast succinic acid biosynthesis pathway and replaced the 
NAD-dependent dihydroxyacetone pathway with the native 
glycerol metabolism pathway. The yield of succinic acid 
produced by modiϐied bacteria under batch culture conditions 
in glycerol was 10.7 g/L [68].

Carbonic anhydrase

The carbonic anhydrase (CA) is the primary enzyme 
responsible for the hydration of atmospheric CO2, which has 
a catalytic conversion frequency of 106 s-1. In addition to CO2 
capture, CA also can be used for multi-enzyme-catalyzed 
conversions, chemical-enzyme-catalyzed conversions, and 
biological conversions [69] . Interaction with RuBisCo, 
phosphoribulokinase (PRK), and other enzymes involved in 
natural CO2 ϐixation pathways is necessary to enable the CA 
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function in biosynthesis. Introducing CA into E. coli, the ϐlux 
of the CO2-ϐixing bypass pathway increased from 13% to 17% 
[7 0]. Gleizer et al., coexpressed CA, RuBisCo, PRK, and FDH in 
E. coli to transform heterotrophic organisms into complete 
autotrophic organisms through laboratory evolution 
techniques [32]. Effendi et al., expressed human carbonic 
anhydrase in E. coli MG1655 using a dual promoter σ70 and 
heat shock protein (HSP70A) instead of inducers to enhance 
its activity under high-temperature conditions. Cadaverine 
was successfully produced by the modiϐied bacteria with a 
yield of 36.7 g/L using CO2 as a substrate [71].

Formate dehydrogenase

The formate dehydrogenase (FDH), commonly known 
as CO2 reductase enzyme, catalyzes the transformation of 
CO2 into formic acid [72,73]. Du, et al. overexpressed yeast 
formate dehydrogenase in S. cerevisiae, which led to modiϐied 
yeast that consumed 30% more glucose and produced 13% 
more ethanol [74]. Wang, et al. combined CO2 ϐixation and 
formate consumption in yeast. The modiϐied bacteria formate 
utilization rate was continuously improved to 0.48 g/L/h, 
and the FFA titer reached 10.1 g/L under glucose-feeding 
conditions [75]. Under anaerobic conditions, E. coli produces 
formate hydrolyzase (FHL), which oxidizes formic acid 
into CO2 and H2. By raising the pressure of CO2 and H2 gases 
inside the reactor, Roger, et al. discovered that FHL efϐiciently 
converted CO2 and H2 to formate and formate extracellular 
concentrations accumulated to above 500 mM [76]. Based 
on FDH's extraordinary efϐiciency at lowering CO2, it has the 
potential to directly air capture and use carbon. Formic acid, 
a byproduct of FHL metabolism, can either be used as an 
energy source or transformed into other useful substances by 
chemical or biological processes [77,78].

CO2-fi xing microorganisms: CO2-fi xing Autotrophs 

Autotrophs use CO2 as their main or only source of 
carbon by photosynthesis or chemosynthesis. It can be 
achieved to reduce CO2 emissions by modifying autotrophic 
microorganisms to produce bioproducts while also ϐixing 
carbon dioxide.

Photoautotroph

Photosynthetic autotrophic microalgae are able to ϐix 
CO2 through their metabolic pathways by using CO2 ϐixation 
enzymes like RuBisCo and CA. Microalgae are an excellent 
resource of biobased feedstock for the generation of biofuels 
because they have better photosynthesis and a greater CO2 
ϐixation efϐiciency than terrestrial plants [79]. Microalgae 
also have advantages in cultivation, growth rate, and oil 
content. Microalgae are therefore essential for the production 
of biomass and the ϐixation of carbon [80,81]. Wei, et al. 
overexpressed the RuBisCo activator enzyme (nRCA) from 
Nannochloropsis oceanica in Nannochloropsis spp., which 
increased the biomass output by 46%, the large subunit 
protein expression level by 45%, the growth rate by 32%, and 

the productivity of the lipids by 41% [82]. Wang and Shin, et 
al. modiϐied the light-trapping antenna protein to increase 
microalgae photosynthetic system efϐiciency for solar energy 
utilization and carbon ϐixation rate [83,84]. Using 15% CO2 
(v/v) as a screening stress and a spotting plate method, Jin, 
et al. determined that Heynigia riparia SX01 had the highest 
biomass productivity (0.39 g/L/day) and CO2 ϐixation rate 
(0.71 g/L/day) [79]. This study offers insightful information 
on employing microalgae to convert CO2 from ϐlue gas into 
biomass feedstock.

Cyanobacteria are another photoautotrophic bacterium 
that can be easily designed and has low food requirements, 
similar to microalgae. Researchers have successfully 
manipulated cyanobacteria to produce alcohols, alkenes, 
terpenes, and organic acids [85-89]. However, due to their 
need for light and gas supply, photosynthetic bacteria are only 
able to produce a limited amount of light-sensitive, volatile, 
and intracellularly unstable chemicals. Li, et al. proposed 
an integrated strategy (iPRCC) that combines a carbon 
sequestration module and a resting cell catalysis module. E. 
coli was manipulated genetically to transform intermediates 
into light-sensitive products and intracellularly unstable 
molecules after modiϐied cyanobacteria were used to drive 
metabolism toward stable substrates. This study expands 
the possible use of carbon-negative biosynthesis technology 
while using CO2 biosynthesis for high-value compounds like 
vanillin [90].

Along with microalgae and cyanobacteria, purple non-
sulfur bacteria like Rhodospiralis and Rhodobacter spheroides, 
as well as anaerobic photosynthetic purple sulfur bacteria, can 
utilize carbon dioxide to produce chemicals [91]. Fixen, et al. 
used a transcription factor NifA mutant to activate nitrozyme 
expression, regulate intracellular metabolism of electrons and 
energy, and drive Rhodopseudomonas palustris to convert CO2 
into methane [92].

Chemolithoautotrophic

Chemoautotrophs obtain energy by oxidation of 
environmental electron sources such as ammonia, hydrogen, 
carbon compounds, and sulfur. The hydrogen-oxidizing 
bacterium Ralstonia eutropha (also known as Cupriavidus 
necator) exhibits a wide range of metabolic processes, 
employing CO2 as the sole carbon source and H2 and O2 gases 
as substrates [93]. R. eutropha efϐiciently produces PHB and 
directs the carbon ϐlux towards biofuels and other high-density 
carbon chemicals like isobutanol, methyl ketone, isoprene, 
sucrose, modiϐied PHB, and plant growth accelerator via 
metabolic engineering techniques to optimize their metabolic 
pathway [93].

Wang, et al. successfully constructed a glucose metabolic 
pathway in C. necator H16, by blocking the ED and PHB 
synthesis routes, enabling hydrogen-oxidizing bacteria 
to effectively utilise glucose, glycerol, and CO2 for inositol 
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synthesis [94]. Joshua, et al. successfully developed a 
heterologous (R)-1, 3-butanediol biosynthesis route in C. 
necator H16 by implementing (R)-3-hydroxybutyraldehyde 
CoA and pyruvate-dependent pathways, knocking out 
competing pathways, and increasing butanediol synthesis 
gene expression levels [95]. Liu, et al. created a novel water-
splitting biosynthetic system that enables R. eutropha to 
synthesize chemicals using hydrogen produced during the 
water decomposition process under low CO2 concentration. 
With up to 50% energy efϐiciency during CO2 reduction, 
this artiϐicial photosynthetic system demonstrates amazing 
potential and offers a platform for microorganisms to make 
use of light energy to ϐix CO2 [96].

Through the enzyme action of formate dehydrogenase, C. 
necator is able to convert formates into CO2 and then participate 
in the Calvin cycle. However, the high ATP need of this process 
restricts the amount of biomass production. Claassens, et al. 
established a reductive glycine route in C. necator, achieving 
similar growth rates compared to the wild type, after short-
term evolution, which offers the potential for biologically 
converting formic acid [97]. Even though R. eutropha has a 
highly developed genetic system for the bioconversion of 
carbon dioxide and the capacity to manufacture a variety of 
chemical products, more research is required to improve its 
genetic tools and synthetic biology techniques compared to 
other model microorganisms [98].

Common chemoautotroph Clostridium mainly ϐixes carbon 
via the reductive CoA process. Cheng et al., overexpressed aor, 
adhE2, and fnr in Clostridium carboxidivorans, which increased 
butanol and ethanol yields by 18% and 22%, respectively 
[99]. Huang, et al. utilized a phage serine integrase-mediated 
site-speciϐic genome engineering technique introducing 
heterologous phage attachment/integration (Att/Int) systems 
in Clostridium ljungdahlii, the modiϐied strain produced a 
butyric acid yield of 1.01 g/L [100]. Clostridium ljungdahlii is 
an anaerobic, non-photosynthetic mixotrophic bacteria, that 
uses both organic and inorganic compounds, such as sugar 
and CO2 and H2. Jones et al., genetically modiϐied C. ljungdahlii 
and the engineered strain acetone output had reached 138% 
of the theoretical maximum [101].

Additionally, via either the Calvin cycle or the CoA pathway, 
electroautotrophs can directly or indirectly use electricity as a 
source of energy for ϐixing carbon dioxide.

CO2-fi xing heterotroph

Natural C1 metabolizing microorganisms can convert CO2 
into biofuels and chemicals. However, due to ineffective carbon 
ϐixation capacity, which results in signiϐicant carbon loss, 
their bioproduction efϐiciency is far less than heterotrophs. 
Industrial model microorganisms have become an attractive 
host for the construction of third-generation bioreϐineries 
in contrast to naturally CO2-ϐixing microorganisms because 
of their advanced molecular and synthetic biology tools and 
well-established fermentation processes [63].

Yeast

Yeast performs exceptionally well in industrial settings, and 
creating CO2-ϐixing yeast strains presents an attractive choice 
for developing carbon-neutral industrial processes. Anaerobic 
fermentation byproducts like glycerol can be produced due to 
redox cofactor imbalances. It can increase both carbon use and 
biological production, and decrease byproduct production 
by using CO2 produced during fermentation as an electron 
acceptor for NADH oxidation in microorganisms.

Xia, et al. overexpressed the reductive pentose phosphate 
pathway in S. cerevisiae SR8 as well as the CO2 ϐixation enzyme 
of the CBB cycle to improve xylose fermentation [62]. Prk, 
RuBisCo, and GroESL were expressed in Saccharomyces 
IMU032 by Guadalupe, et al. Engineered strain produced 90% 
less glycerol and 10% more ethanol under conditions of a sugar-
limited medium with glucose and galactose fermentation [63]. 
Li, et al. built the CBB pathway in S. cerevisiae and fermented 
it in a YP medium supplemented with 70 g/L maltose and 40 
g/L xylose, the modiϐied yeast CO2 ϐixation rate was 336.6–
436.3 mg/CO2/L/h [64]. Compared to the metabolism of 
glucose, the sorbitol metabolism by glycolysis produces 
one more molecule of NADH. By introducing the sorbitol 
metabolic pathway into yeast, Van Aalst, et al. increased the 
efϐiciency of biological production by providing additional 
electrons for carbon ϐixation pathways [102]. Gassler, et al. 
changed the Pichia pastoris endogenous methanol absorption 
system into a CO2 ϐixation pathway through chromosome 
integration technology. Completely autotrophy strain using 
CO2 as the only carbon source was successfully obtained 
after laboratory evolution [33]. Both metabolic engineering 
and protein engineering should be taken into consideration 
to optimize Rubisco-PRK pathways and increase protein 
expression levels in order to achieve functional expression 
of RuBisCo in yeast; establishing natural mechanisms for 
intracellular CO2 concentration is also essential for effective 
carbon sequestration [65].

Yeast ϐixes carbon dioxide using also the rTCA cycle. 
Xiberras, et al. integrated expression cassettes for three 
enzymes that convert oxaloacetate to SA in the cytosol 
("SA module") into the yeast genome to produce succinic 
acid, achieving a maximum yield of 0.22 g/g glycerol [67]. 
Xu, et al. increased fumaric acid production to 1.6 g/L by 
metabolic engineering with S. cerevisiae EN.PK2-1C as host 
[68]. Recently, researchers coupled electrocatalysis and 
biosynthetic techniques to produce glucose and free fatty 
acids from CO2 and water, yielding 2.2 g/L of glucose and 
448.5 mg/L of free fatty acids [103]. Additionally, expressing 
pyruvate carboxylase expression in yeast can also synthesize 
amino acids, ethanol, and other compounds.

Escherichia coli 

E. coli is a potential heterotrophic organism to metabolize 
CO2 due to rapid growth, and abundant genetic tools. Zhuang, 
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et al. successfully expressed RuBisCo and PrkA in E. coli, the 
engineered strain CO2 emission decreased by 15% compared 
to the wild strain (JB), while the CO2 ϐixation rate remained 
constant at 67 mg CO2/mol arabinose/L/h, similar to 
microalgae and cyanobacteria [61]. Gong et al., introduced CA 
into E. coli to enhance intracellular CO2 concentration [70]. 
Gleizer, et al. coexpressed RuBisCo, Prk, and FDH in modiϐied 
E. coli to convert heterotrophic bacteria to total autotrophic 
utilizing CO2 as the only carbon source [32]. When RuBisCo is in 
the activated state, it catalyzes the conversion of the substrate 
RuBP and CO2 into two molecules of 3-phosphoglyceric acid 
(PGA). Pang, et al. coexpressed RuBisCo and Rca in E. coli to 
study the effect of the activating enzyme on carboxylation 
activity; which improved host overall metabolism by reducing 
intracellular RuBP inhibition on the expression of RuBisCo 
[57]. Hu, et al. overexpressed pyruvate carboxylase in E. 
coli and the engineered bacteria malic acid production rose 
by 110% [104]. Bang, et al. constructed recombinant THF 
and reduced glycine pathways in E. coli, this increased the 
ϐlux of formic acid and CO2 assimilation towards pyruvate 
synthesis from 4.5% to 14.9% [50]. Heterologous expression 
of the carbon ϐixation pathway allows host assimilation of C1 
substrates, but one or multi-step reactions are insufϐicient for 
effective CO2 ϐixation. The efϐiciency of carbon ϐixation enzymes 
may be signiϐicantly increased by creating an environment 
where autotrophs assimilate CO2 in the heterologous host. 
Prochlorococcus marinus MED4 carboxylase structural 
protein, stabilizing factor, molecular chaperone, and auxiliary 
module were coexpressed in E. coli to successfully engineer 
the synthesis of carboxysomes (CBs), which led to a notable 
improvement in CO2 assimilation capability [105]. Although 
the construction of carboxysomes is essential for effective 
CO2 assimilation, due to the large number of related genes 
and complicated assembly process, it imposes development 
expenses. Accelerating CO2 ϐixation using carboxylases in 
heterotrophic bacteria requires more research.

Although the conversion of heterotrophic E. coli strains 
to autotrophic has been accomplished, more study is still 
required to improve metabolic ϐlux, enhance C1 capture and 
utilization efϐiciency, and accelerate the growth of "synthetic 
autotrophic microorganisms" [106].

Microbial CO2 fi xation by metabolic engineering

The bioconversion of CO2 exhibits low energy consumption, 
less pollution, a wide range of products, and high conversion 
efϐiciency. Utilizing microbial metabolism to convert CO2 into 
biobased chemicals is a fundamental strategy in addressing the 
challenge of increasing global atmospheric CO2 concentration 
[1]. There are two main ways for microorganisms to 
metabolize carbon dioxide and produce value-added 
compounds: one involves building biosynthetic production 
pathways in naturally carbon ϐixation organisms, and the 
other involves converting heterotrophic production strains 
into "synthetic autotrophic strains" through the use of carbon 

ϐixation pathways. This section examines developments in 
the metabolic engineering of microbial conversion of carbon 
dioxide into biomass, biofuels, and other important biobased 
compounds (Figure 3). 

Alcohols

Synechococcus and engineered cyanobacteria use 
carbon dioxide and solar energy to produce alternative 
fuels or chemicals, which has the potential to greatly reduce 
reliance on fossil fuels and minimize carbon emissions. 
Kusakabe et al., successfully engineered a pathway in 
Synechococcus elongatus PCC7942 for isopropanol synthesis, 
after optimizing production conditions, the engineered 
cyanobacteria produced 26.5 mg/L of isopropanol [85]. By 
deleting the regulatory gene cp12 and overexpressing key 
enzymes of the oxidative pentose phosphate pathway in S. 
elongatus PCC7942, Kanno, et al. created engineered bacteria 
that can produce 12.6 g/L of 2,3-butanediol in both dark and 
light environments [86]. Shen, et al. modiϐied the S. elongatus 
PCC7942 by introducing ketoacid decarboxylase, alcohol 
dehydrogenase, and citramalate pathways to improve the 
biosynthesis of isoleucine, a precursor to 2-ketobutyrate. The 
ultimate 2-methyl-1-butanol concentration of the modiϐied 
bacterium was 200 mg/L, highlighting the ϐirst time 2MB was 
produced through photosynthetic [87]. In Synechocystis sp. 
PCC 6803, Yao, et al. expressed the fatty acyl-CoA reductase 
gene maqu_2220 and knocked off competing pathways, 
which resulted in directed carbon ϐlux towards fatty alcohol 
synthesis and a ϐinal titer reached 2.87 mg/g dry weight 
[107]. Li, et al. used R. eutropha H16 as the host bacteria 
and introduced isobutanol and 3-methyl-1-butanol (3MB) 
synthesis pathways. The modiϐied strain LH74D used formate 
produced by CO2 electrochemistry as a carbon source with a 
yield of 0.57 g/liter for 3MB production. This study showed 
the viability of employing carbon dioxide as a feedstock 
and electricity as an energy source to drive the biological 
conversion of carbon dioxide into different compounds [108].

Numerous research have suggested that yeast can make 
ethanol expressing the heterologous carbon ϐixation pathway. 

Figure 3: Various commodity chemicals and bioproducts derived from CO2 by 
microorganisms.
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This strategy reduces the generation of glycerol and increases 
the output of ethanol by using CO2 as an electron acceptor for 
NADH reoxidation [109].

Organic acids

Hu, et al. coupled carboxylation reactions that produce 
ATP in the main metabolic pathway with consume ATP in the 
natural carbon ϐixation pathway in E. coli to improve the yield 
of malic acid [104]. Yu, et al. improved gene expression levels 
by combining promoters (P4, P17, and P19), CO2 transport 
genes (sbtA or bicA), and ϐixed genes (ppc and pck) in E. coli. 
the modiϐied strain AFP111 compared to the control strain, 
succinic acid yield increased by 37.5%, reaching 89.4g/L 
[110]. Kang, et al. overexpressed pyruvate carboxylase, malate 
carboxylase, and malate transporter in yeast and introduced 
the xylose fermentation pathway, the resulting strain 
produced 61.2 g/L of malic acid in fed-batch culture [38]. 
Wang, et al. successfully enhanced 3-HP biosynthesis in the 
cyanobacterium Synechocystis sp. PCC 6803 by enhancing the 
expression levels of essential enzymes, improving precursor 
supplies of malonyl-CoA and NADPH, and suppressing 
competing routes. The 3-HP yield of the modiϐied strain 
reached 837.18 mg/L [111]. D-lactate is essential to produce 
polylactic acid. The methylglyoxal synthase gene from E. coli 
was inserted into the cyanobacterium S. elongatus PCC7942 to 
directly manufacture lactic acid from carbon dioxide through 
methylglyoxal utilizing dihydroxyacetone phosphate (DHAP). 
The maximum lactate titer obtained was 13.7 mM (1.23 g/l) 
[112]. Besides organic acids, microorganisms can also use CO2 
to synthesize inorganic acids such as acetate and butyric acid 
[113].

Fatty acids and lipids 

Fuel made from fatty acids is an important biofuel. 
Microalgae are examples of photosynthetic microorganisms 
that can use fatty acid synthase to turn CO2 into malonyl-
CoA, synthesize fatty acids, and extend the carbon chain. 
These compounds, such as triglycerides and polyphosphate 
triglycerides, can then be hydrolyzed for use in the chemical, 
food, and energy industries [114,115]. Wang, et al. designed a 
C1 substrate assimilation platform in S. cerevisiae to synthesize 
free fatty acids (FFAs) from CO2 and formic acid. The formic 
acid utilization rate increased 21.8 times in the modiϐied 
strain KW301, while the fatty acid output increased 33.7 
times, reaching 10.1 g/L [75]. Li, et al. controlled the metabolic 
pathway of R. eutropha H16 to synthesize fatty acids using H2, 
CO2, and O2 as substrates, in a gas autotrophic fermentation 
system. The engineered bacteria B2 generated free fatty acids 
and reached 60.64 mg/g in less than 48 hours [116]. Hu, et 
al. modiϐied Clostridium acetogenes to produce biodiesel from 
synthetic gas in an integrated continuous reactor system with 
an output of 18 g/L of C16-C18 triacylglycerides [117].

Bioplastics

The production and consumption of non-biodegradable 

plastics have been steadily increasing over the last few 
decades, causing a signiϐicant environmental load on the 
environment. The replacement of petroleum-based plastics, 
on the other hand, offers promising prospects owing to 
the easy degradability and sustainability of bioplastics. 
Polyhydroxybutyrate (PHB), is a biodegradable polymer 
synthesized through microbial fermentation [118]. 
Proteobacteria, cyanobacteria, purple non-sulfur bacteria, 
and other microbes produce PHB by a process that is catalyzed 
by the three enzymes PhaA, PhaB, and PhaC. Mozumder, et 
al. utilized C. necator in syngas (10% CO2, 75% H2, and 15% 
O2) to create PHB, with a yield of 42.9 g/L [119]. Karmann 
et al., designed R. rubrum for synthesizing PHB by utilizing 
syngas consisting of CO and CO2 as carbon sources and energy 
sources [120]. Weiss, et al. developed a synthetic symbiotic 
system where the S. elongatus PCC 7942 CscB secretes sucrose 
to support Halomonas boliviensis to produce PHB, resulting in 
a yield of 28.3mg PHB/L/d [121]. Chen et al., constructed a 
microbial electrosynthesis system (MES) for the CO2-driven 
synthesis of PHB by R. eutropha [122]. Costa, et al. used a two-
stage fermentation with Clostridium autoethanogenum as the 
host to create PHA [123]. Even though the production of PHB 
by microorganisms on a large scale has been accomplished 
using CO2, further research discovered that utilizing sugar as 
the substrate rather than CO2 as the substrate produced more 
PHB. Therefore, the ability of microbes to capture and use CO2 
still needs signiϐicant improvement.

Terpenoids

Terpenoids, referred to as isoprenoids or terpenes, 
are a broad and diverse class of chemical molecules with 
several industrial uses, such as in the food, cosmetics, 
and pharmaceutical industries. Microorganisms produce 
isoprenoids through the mevalonate pathway (MEV) and 
methylerythritol 4-phosphate (MEP) pathway [124]. By 
expressing menthollimonene synthase and abies α-red 
myrrh synthase, Fiona, et al. effectively engineered 
Synechococcus sp. PCC7002 to generate limonene and α-red 
myrrh in polychlorella, with yields of 4 mg/L and 0.6 mg/L, 
respectively. This achievement offers a promising platform 
for the production of terpene compounds using algae [89]. 
The engineered Anabaena sp. PCC7120 was constructed with 
coexpressed limonene synthase gene (lims) as well as a DXP 
operon. Under higher light intensity, the limonene yield and 
productivity increased 6.8 and 8.8 times more than the control 
strain, respectively [125]. Gao, et al. modiϐied S. elongates to 
use the methylerythritol phosphate route to produce isoprene, 
resulting in the designed strain isoprene production reaching 
1.26 g/l from CO2 [126].

Hydrocarbons

Hydrocarbons, which are made of carbon and hydrogen, 
are crucial parts of petroleum. Alkanes and alkenes can be 
produced by cyanobacteria using a natural carbon ϐixation 
route. By optimizing the expression level of the Pseudomonas 
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syringae ethylene forming enzyme (efe code), as well as 
adjusting light intensity and nutritional conditions, Justin, et al. 
increased ethylene synthesis in Synechocystis sp. PCC6803 and 
achieved a maximum ethylene yield of 171 mg/L/d [127].In 
order to produce ethylene utilizing 2% CO2 as a carbon source, 
Tomas, et al. overexpressed the Sy-efe gene in Synechocystis sp. 
PCC 6803 [128].

Biomass

Heterotrophs exclusively consume organic chemicals, while 
autotrophs possess the ability to utilize CO2 for the synthesis 
of valuable compounds. The primary objective in synthetic 
biology is to engineer heterotrophic organisms capable of 
harnessing CO2 as a carbon source for biomass production. In 

an electrochemical-biological system designed by Zheng, et 
al. [103], yeast with a deactivated glucose metabolic pathway 
produced long carbon chain molecules like glucose and fatty 
acids from acetic acid and acetate created by electrocatalyzed 
CO2. This process yielded 2.2 g/L of glucose. Wang et al., 
genetically modiϐied C.necator to ϐix CO2 and produce glucose 
with a yield of 253.3 mg/L, providing a viable approach for 
microorganisms to generate glucose from CO2 [129].

The bioconversion of CO2 has many advantages, such as 
low energy consumption, a wide range of products, higher 
conversion rates in large-scale production, and no competition 
for food and land resources (Table 2). Around 11.5 million 
tons of CO2 are annually converted through biotechnology into 
a variety of goods worldwide, but this number is considerably 

Table 2: Some value-added bioproducts derived from CO2

Pathway Organism Carbon Source Key genes Product Ref
CBB E. coli L-arabinose, xylose cbbM, PrkA Ethanol, acetate [61]
CBB Saccharomyces cerevisiae maltose, xylose XR, XDH, XKS, sPRK, cbbM Ethanol [64]
CBB S. cerevisiae glucose, galactose GroEL, GroES,  cbbM, PRK Ethanol [63]
CBB S. cerevisiae glucose, formate cbbM, prk, fdh Free fatty acids [75]
CBB S. elongatus PCC7942 CO2 thl, atoAD, adc, adh Isopropanol [85]
CBB

glycolytic S. elongatus PCC7942 CO2, glucose galp, zwf, gnd, rbcLXS Butanediol [86]

CBB S. elongatus PCC7942 CO2 Kivd, YqhD 2-Methyl butanol [87]
CBB S. elongatus PCC7942 CO2 MsLS Limonene [88]
CBB S. elongatus PCC7942 CO2 pdc,  adh, atfA, xpkA, pta Fatty acid ethyl esters [89]
CBB S. elongatus PCC7942 CO2 pal Olefi ns, Cinnamaldehyde, Curcumin [90]

CBB glycolytic E. coli CO2, glucose pck, mdh Malate [104]
CBB M. extorquens AM1 CO2 Prk, cbbM Cell growth [34]
CBB C. necator CO2 HAD1, cbbY2 Glucose [129]
CBB Synechocystis sp. PCC6803 CO2 maqu_2220 Fatty alcohol [107]
CBB R.eutropha H16 CO2 AlsS, ilvCD, kivd & yqhD Isobutanol, methyl-butanol [108]
CBB S. cerevisiae glucose Rubisco, GroEL/GroES, PRK, non-ox PPP Ethanol [109]
CBB Synechocystis sp. PCC6803 CO2 mcr, accB, accC, accA, accD, birA, pntA, pntB 3-HP [111]
CBB S. elongatus PCC7942 CO2 mgsA Lactate [112]
CBB
rTCA R. eutropha H16 CO2/O2/H2 acc, Ltes, Fas, acpS Fatty acids [116]

CBB C. necator CO2/O2/H2 Lipid [119]

CBB S. elongatus PCC7942, 
H. boliviensis CO2 CscB Ethanol or hydrocarbon fuels [121]

CBB
TCA C.necator H16 Glucose, Glycerol, CO2 ScIPS, EcIMP myo-inositol [94]

CBB C. necator H16 CO2 bld, adhE, dra, s-adh, PDC (R)-1,3-butanediol [95]
CBB TCA
EM-CoA R. rubrum CO2, acetate PHB [120]

TCA S. cescerevisiae xylose PYC1, PYC2, MDH3, SpMAE1 Malate [38]
TCA S. cescerevisiae glucose RoPYC, SFC1 fumaric acid [68]
TCA S. cescerevisiae Glycerol PYC2, MDH3-R, fumR, FRDg-R Succinic acid [67]
TCA Synechocystis 6803 CO2 efe Ethylene [127]
TCA E. coli CO2, g lucose sbtA, bicA, ppc, pck Succinate [110]
rGly Methanol, CO2 Glycine, Serine, Pyruvate [49]
rGly E. coli CO2, FA reconstructed THF cycle, gcvTHP, lpd Glycine, serine [50]
rGly C. necator Formate ftl, fch, mtdA,gcvT, gcvH, gcvP Biomass [97]
W-L C. carboxidivorans CO/CO2/H2 aor, adhE2, fnr Ethanol, butanol [99]
W-L C. ljungdahlii CO/CO2 Att/Int system Butyric acid [100]
W-L C. ljungdahlii H2/CO/CO2 thl, ctfAB, adc acetone [101]

W-L M. thermoacetica, 
Yarrowia lipolytica H2/CO2 Lipid [117]

W-L Clostridium autoethanogenum CO/CO2/H2/N2 PHA, bioethanol [123]
W-L Clostridium acetobutylicum CO2 Acetone, butanol [133]

Electrosynthesis Clostridium
autoethanogenum CO2 Butyrate [113]

Biosystem-electro S. cerevisiae CO2 yihx, agpP Long-chain compounds [103]
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insufϐicient in comparison with the annual CO2 emissions (24 
billion tons). The application of microorganisms, particularly 
heterotrophs, to convert CO2 and use it to synthesize 
bioproducts still needs further research.

Discussion
Through synthetic biology and metabolic engineering, 

the researchers have synthesized carbon sequestration 
pathways with lower energy consumption and fewer 
reaction steps, screened enzymes for carbon sequestration 
with higher carboxylation efϐiciency, and improved the CO2 
assimilation ability of natural CO2-ϐixing microorganisms, 
these advancements have further facilitated the achievement 
of carbon sequestration and emission reduction targets. 
However, microbial CO2 ϐixation research is still in the early 
stages of development, there remain several drawbacks, 
such as low carbon sequestration efϐiciency and energy 
capture efϐiciency, as well as huge disparities between goal 
product production and industrial requirements. Therefore, 
more research is needed to explore in terms of CO2 ϐix ation 
efϐiciency, and utilization of energy [130-132].

Conclusion
Thoroughly investigated and optimized natural carbon 

sequestration pathway and directed evolution of carbon 
ϐixation enzymes by rational and semi-rational design enable 
increase in the efϐiciency of key enzymes and met abolic 
modules of the carbon sequestration pathway. In order to 
efϐiciently use energy, realize optical drive, and electric drive 
biocatalysis, it is necessary to optimize the energy utilization 
systems of electric autotrophs and chemoautotrophs and 
develop new materials for capturing light energy, generating 
electricity. Furthermore, by enhancing the electron transfer 
mechanism and coupling electro-biological CO2 ϐixation, this 
will have the potential to use microorganisms on a broad 
scale to produce added value products from CO2, while 
simultaneously decreasing the cost of microbial conversion 
technology. 
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