Review Article
Published: 01 May, 2025 | Volume 9 - Issue 1 | Pages: 012-017
Polymer Electrolyte Membrane Fuel Cells (PEMFCs) operating in Dead-Ended Anode (DEA) mode present a promising alternative to traditional flow-through systems by simplifying design and reducing costs. However, their efficiency and durability are challenged by transient phenomena such as water accumulation, nitrogen buildup, and carbon corrosion throughout operation. This review investigates the dynamic behavior of DEA PEMFCs under dynamic operating states, aiming to improve their efficiency. By analyzing purge cycle optimization and transient response characteristics, we identify strategies to mitigate hydrogen loss, maintain voltage stability, and extend stack lifetime. The key findings indicate that precise purge scheduling and effective water management are critical for optimizing performance, with dynamic models providing insights into time-dependent processes. This study underscores the potential of DEA PEMFCs for high-efficiency applications provided transient effects are effectively managed.
Read Full Article HTML DOI: 10.29328/journal.acee.1001075 Cite this Article Read Full Article PDF
Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7
HSPI: We're glad you're here. Please click "create a new Query" if you are a new visitor to our website and need further information from us.
If you are already a member of our network and need to keep track of any developments regarding a question you have already submitted, click "take me to my Query."